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Develop technologies to determine system/component 
degradation and damage significantly prior to failure.  

Enable nearly continuous on-board situational awareness of the 
vehicle electronic-system health state. 

Understand fault modes associated with high-power electronics, 
and lead-free solder joints, new packaging architectures. 

Develop automatic methods for detection, diagnosis, and 
prognosis of the vehicle at a system and subsystem level. 

Develop capabilities for analyzing effects of environmental 
hazards on vehicle electronics, damage and degradation 
mechanisms to assess the vehicle’s health state. 

Objectives
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Approach to Prognostics Framework

Library of Damage Proxies
Micro-structural evolution of damage, 
Feature vectors, physics of damage, 
time-spectral evolution of damage

Health Assessment and Prognostics

Prognostic Health 
Management System

System-State 
Interrogation 
Algorithms

Early System State-
Sensor Cells

Residual Life 
Computation 
Algorithms

Prognostic Health 
Management System

System-State 
Interrogation 
Algorithms

Early System State-
Sensor Cells

Residual Life 
Computation 
Algorithms

System-State 
Interrogation 
Algorithms

System-State 
Interrogation 
Algorithms

Early System State-
Sensor Cells

Early System State-
Sensor Cells

Residual Life 
Computation 
Algorithms

Residual Life 
Computation 
Algorithms

Condition Monitoring Cells
Identical failure mechanisms, separate 
from functional circuitry, proof self-
load, multiple sensor-data.  
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Test Vehicles
PBGA676-
1.0mm - 27mm -
DC

PBGA196-
1.0mm -15mm -
DC

FLEXBGA280 - 0.8mm -16mm-DC 

TARRAY144 - 0.8mm - 10mm-DC 

TARRAY64 -
0.5mm - 6mm -
DC 

CABGA84-
0.5mm -7mm -
DC
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Cu-Reinforced 
Solder Columns
Sn15/Pb85

Micropearl
SOL650 SnAg
Finish

Sn10/Pb90

96.5Sn3Ag0.5Cu

63Sn37Pb

CCGA

CBGA

SAC 405

SAC Alloys
1.    SAC105
2.    SAC305
3.    SAC0307
4.    SACX
5.    SACX-plus
6.    Sn3.5Ag

CABGA100
0.8mm Pitch

10mm
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DIC  Experimental Set-up

JEDEC (90-Degree) Drop
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Sine Sweep from 
50-500 Hz at 2G

Sine Sweep Profile (2G)
Fixture

Amplifier

Signal Controller

Field Power Supply

Test specimen

Vibration Direction

Shaker

High Speed Camera

Random Profile from 
12-500 Hz at 2.54 Grms

Vibration Testing
- Experimental Setup
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Digital Image Correlation

SACX – plus; Drop 
78; t = 1.98ms, 

SACX – plus; Drop 430;  
t = 1.98ms, 

SACX – plus; Drop 
78; t = 1.98ms, 

SACX – plus; Drop 430;  
t = 1.98ms, 

2D strain contours at package location 13 
before and after failure for the SACX-

Plus alloy system
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Wavelet Packet Decomposition
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Group of Values: 
Covariance Matrix:

Mahalanobis Distance 
Computation

Mahalanobis distance accounts 
for the variance and covariance 
of the variables as opposed to 
only the average value.
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Time Frequency Distribution

Time Frequency Representation of a Transient Strain Signal 

Time Moment Feature Vector
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Failure Mechanisms

100 μm 

Pad I/O PCB side Resin Crack. Failed Solder Joint at Package Interface 

Failed Solder Joint at board-interface Cracking of Copper and Laminate 
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One Solder Beam Cracked
(a) 

Two Solder Beams Cracked
(b) 

Three Solder Beams Cracked
(c) 

Four Solder Beams Cracked
(d) 
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Solder Phase Growth

Cross-sectioned samples at 
various levels of thermal 
cycling and thermal aging

Cross section studies under SEM 
JEOL JSM-7000F.  

Measured the Ag3Sn particle size 
(g) from a 60 μm x 45 μm
rectangular region selected 
from a backscattered SEM 
image of a highest strain 
corner solder ball
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Indicators of Damage
> Cyclic Thermo-Mechanical Loads

SAC105 SAC305 SAC0307

SACX SACX-plus96.5Sn3.5Ag
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Progression of Damage Pre-Cursors
> Phase Growth Measurements - Thermal Cycling
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Case 1: Thermo-Mechanical Loads
> Interrogate System State in Prognostication Time-Neighborhood

0.95 - 1.151.00 - 1.250.00005 - 0.003SAC0307

0.92 – 1.021.10 – 1.200.0004 – 0.0013SAC105

Initial Grain
size ‘g0’
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System Trust 
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Interrogation of System State
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Interrogation of System State 
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Model Validation
Interrogate system state in the time-neighborhood of 250 cycles.  
Assessment of prior damage.  
Determination of residual life.  

218523224171.1695256825028181.3635C84
143123116621.1447168325019331.3310T64
184323020731.2272175425020041.1860T144
119133215230.8756173925019891.1434F280
234122925700.8916296925032191.1167P676
RLNN1%dS/dNRLNN1%dS/dN

Model PredictionsExperiment
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Resistance Spectroscopy Damage Pre-cursors
- Phase Shift vs Time
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Electrical Continuity and Measured Phase
Angle of Package During Vibration Test

Lead-Indicator of Failure
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Summary and Conclusions
Developed leading indicators of failure for shock, vibration, 

isothermal and cyclic thermo-mechanical loads.  
Developed a methodology has been presented to calculate the 

prior damage in electronics subjected to cyclic and isothermal 
thermo-mechanical loads. 

The correlations indicate that the leading indicators based PHM 
technique can be used to interrogate the system state and thus 
estimate the Residual-Life of a component

The presented approach of computing residual life can be 
implemented prior to appearance of any macro-indicators of 
damage like crack


